apl>" <-APL2-------------------- sam316.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl> '6Ox' graph 1,1,1,i,5 ,xpi ,0.5 , 0 ,0 " coshdaty.tex \begin{figure}[tbh] \caption{Graph of y\#11O6Ox+nX0j1} \begin{center} \setlength{\unitlength}{ .573733in} \begin{picture}(7.843374,10.45783) %Draw a frame around the picture \put(0,0){\line(1,0){7.843374}}% bottom \put(0,0){\line(0,1){10.45783}}% left \put(0,10.45783){\line(1,0){7.843374}}% top \put(7.843374,0){\line(0,1){10.45783}}% right %Draw the x axis \put(0,5.228916){\line(1,0){7.843374}}%x axis \put( .980422 , 5.228916 ){\circle*{ .03573093}} \put( 1.960844 , 5.228916 ){\circle*{ .03573093}} \put( 2.941265 , 5.228916 ){\circle*{ .03573093}} \put( 3.921687 , 5.228916 ){\circle*{ .03573093}} \put( 4.902109 , 5.228916 ){\circle*{ .03573093}} \put( 5.88253 , 5.228916 ){\circle*{ .03573093}} \put( 6.862953 , 5.228916 ){\circle*{ .03573093}} %Draw the x axis marker values in pi \put( .900314 , 4.9849 ){$ -\frac{3\pi}{4} $} \put( 1.880735 , 4.9849 ){$ -\frac{\pi}{2} $} \put( 2.861157 , 4.9849 ){$ -\frac{\pi}{4} $} \put( 3.921687 , 4.9849 ){$ 0 $} \put( 4.902109 , 4.9849 ){$ \frac{\pi}{4} $} \put( 5.88253 , 4.9849 ){$ \frac{\pi}{2} $} \put( 6.862953 , 4.9849 ){$ \frac{3\pi}{4} $} %Draw the y axis \put(3.921687,0){\line(0,1){10.45783}}%y axis %Draw the y axis markers \put( 3.921687 , 1.228916 ){\circle*{ .03573093}} \put( 3.921687 , 2.228916 ){\circle*{ .03573093}} \put( 3.921687 , 3.228916 ){\circle*{ .03573093}} \put( 3.921687 , 4.228916 ){\circle*{ .03573093}} \put( 3.921687 , 6.228916 ){\circle*{ .03573093}} \put( 3.921687 , 7.228916 ){\circle*{ .03573093}} \put( 3.921687 , 8.228916 ){\circle*{ .03573093}} \put( 3.921687 , 9.228916 ){\circle*{ .03573093}} %Draw the y axis marker values \put( 4.008836 , 1.128916 ){$ -4 $} \put( 4.008836 , 2.128916 ){$ -3 $} \put( 4.008836 , 3.128916 ){$ -2 $} \put( 4.008836 , 4.128916 ){$ -1 $} \put( 4.008836 , 6.228916 ){$ 1 $} \put( 4.008836 , 7.228916 ){$ 2 $} \put( 4.008836 , 8.228916 ){$ 3 $} \put( 4.008836 , 9.228916 ){$ 4 $} %Label the curve \put( .15686749 , .10457832 ){n\# .5} %Draw the data points \put( .19608436 , .500269 ){\circle*{ .03573093}} \put( .23530123 , .647276 ){\circle*{ .03573093}} \put( .2745181 , .789761 ){\circle*{ .03573093}} \put( .31373497 , .927865 ){\circle*{ .03573093}} \put( .35295185 , 1.061723 ){\circle*{ .03573093}} \put( .39216872 , 1.191468 ){\circle*{ .03573093}} \put( .43138559 , 1.317227 ){\circle*{ .03573093}} \put( .47060246 , 1.439126 ){\circle*{ .03573093}} \put( .509819 , 1.557284 ){\circle*{ .03573093}} \put( .549036 , 1.671818 ){\circle*{ .03573093}} \put( .588253 , 1.782841 ){\circle*{ .03573093}} \put( .62747 , 1.890463 ){\circle*{ .03573093}} \put( .666687 , 1.994789 ){\circle*{ .03573093}} \put( .705904 , 2.095923 ){\circle*{ .03573093}} \put( .74512 , 2.193965 ){\circle*{ .03573093}} \put( .784337 , 2.289011 ){\circle*{ .03573093}} \put( .823554 , 2.381156 ){\circle*{ .03573093}} \put( .862771 , 2.470489 ){\circle*{ .03573093}} \put( .901988 , 2.5571 ){\circle*{ .03573093}} \put( .941205 , 2.641074 ){\circle*{ .03573093}} \put( .980422 , 2.722493 ){\circle*{ .03573093}} \put( 1.019639 , 2.801438 ){\circle*{ .03573093}} \put( 1.058856 , 2.877988 ){\circle*{ .03573093}} \put( 1.098072 , 2.952217 ){\circle*{ .03573093}} \put( 1.137289 , 3.024198 ){\circle*{ .03573093}} \put( 1.176506 , 3.094004 ){\circle*{ .03573093}} \put( 1.215723 , 3.161702 ){\circle*{ .03573093}} \put( 1.254940 , 3.22736 ){\circle*{ .03573093}} \put( 1.294157 , 3.291042 ){\circle*{ .03573093}} \put( 1.333374 , 3.352812 ){\circle*{ .03573093}} \put( 1.37259 , 3.412729 ){\circle*{ .03573093}} \put( 1.411807 , 3.470854 ){\circle*{ .03573093}} \put( 1.451024 , 3.527244 ){\circle*{ .03573093}} \put( 1.490241 , 3.581954 ){\circle*{ .03573093}} \put( 1.529458 , 3.635039 ){\circle*{ .03573093}} \put( 1.568675 , 3.68655 ){\circle*{ .03573093}} \put( 1.607892 , 3.736539 ){\circle*{ .03573093}} \put( 1.647109 , 3.785055 ){\circle*{ .03573093}} \put( 1.686325 , 3.832146 ){\circle*{ .03573093}} \put( 1.725542 , 3.877858 ){\circle*{ .03573093}} \put( 1.764759 , 3.922236 ){\circle*{ .03573093}} \put( 1.803976 , 3.965325 ){\circle*{ .03573093}} \put( 1.843193 , 4.007166 ){\circle*{ .03573093}} \put( 1.882410 , 4.047802 ){\circle*{ .03573093}} \put( 1.921627 , 4.087272 ){\circle*{ .03573093}} \put( 1.960844 , 4.125615 ){\circle*{ .03573093}} \put( 2.00006 , 4.162869 ){\circle*{ .03573093}} \put( 2.039277 , 4.19907 ){\circle*{ .03573093}} \put( 2.078494 , 4.234256 ){\circle*{ .03573093}} \put( 2.117711 , 4.268459 ){\circle*{ .03573093}} \put( 2.156928 , 4.301715 ){\circle*{ .03573093}} \put( 2.196145 , 4.334055 ){\circle*{ .03573093}} \put( 2.235362 , 4.365512 ){\circle*{ .03573093}} \put( 2.274579 , 4.396117 ){\circle*{ .03573093}} \put( 2.313795 , 4.425899 ){\circle*{ .03573093}} \put( 2.353012 , 4.454889 ){\circle*{ .03573093}} \put( 2.392229 , 4.483116 ){\circle*{ .03573093}} \put( 2.431446 , 4.510606 ){\circle*{ .03573093}} \put( 2.470663 , 4.537387 ){\circle*{ .03573093}} \put( 2.509880 , 4.563485 ){\circle*{ .03573093}} \put( 2.549097 , 4.588927 ){\circle*{ .03573093}} \put( 2.588314 , 4.613737 ){\circle*{ .03573093}} \put( 2.62753 , 4.637939 ){\circle*{ .03573093}} \put( 2.666747 , 4.661559 ){\circle*{ .03573093}} \put( 2.705964 , 4.684618 ){\circle*{ .03573093}} \put( 2.745181 , 4.70714 ){\circle*{ .03573093}} \put( 2.784398 , 4.729147 ){\circle*{ .03573093}} \put( 2.823615 , 4.750661 ){\circle*{ .03573093}} \put( 2.862832 , 4.771703 ){\circle*{ .03573093}} \put( 2.902049 , 4.792294 ){\circle*{ .03573093}} \put( 2.941265 , 4.812453 ){\circle*{ .03573093}} \put( 2.980482 , 4.832202 ){\circle*{ .03573093}} \put( 3.019699 , 4.851559 ){\circle*{ .03573093}} \put( 3.058916 , 4.870543 ){\circle*{ .03573093}} \put( 3.098133 , 4.889174 ){\circle*{ .03573093}} \put( 3.137350 , 4.907469 ){\circle*{ .03573093}} \put( 3.176567 , 4.925447 ){\circle*{ .03573093}} \put( 3.215783 , 4.943126 ){\circle*{ .03573093}} \put( 3.255 , 4.960522 ){\circle*{ .03573093}} \put( 3.294217 , 4.977654 ){\circle*{ .03573093}} \put( 3.333434 , 4.994537 ){\circle*{ .03573093}} \put( 3.372651 , 5.011189 ){\circle*{ .03573093}} \put( 3.411868 , 5.027627 ){\circle*{ .03573093}} \put( 3.451085 , 5.043865 ){\circle*{ .03573093}} \put( 3.490302 , 5.059921 ){\circle*{ .03573093}} \put( 3.529518 , 5.07581 ){\circle*{ .03573093}} \put( 3.568735 , 5.091549 ){\circle*{ .03573093}} \put( 3.607952 , 5.107151 ){\circle*{ .03573093}} \put( 3.647169 , 5.122633 ){\circle*{ .03573093}} \put( 3.686386 , 5.13801 ){\circle*{ .03573093}} \put( 3.725603 , 5.153298 ){\circle*{ .03573093}} \put( 3.764820 , 5.168511 ){\circle*{ .03573093}} \put( 3.804037 , 5.183665 ){\circle*{ .03573093}} \put( 3.843253 , 5.198773 ){\circle*{ .03573093}} \put( 3.88247 , 5.213852 ){\circle*{ .03573093}} \put( 3.921687 , 5.228916 ){\circle*{ .03573093}} \put( 3.960904 , 5.24398 ){\circle*{ .03573093}} \put( 4.000121 , 5.259059 ){\circle*{ .03573093}} \put( 4.039338 , 5.274168 ){\circle*{ .03573093}} \put( 4.078555 , 5.289321 ){\circle*{ .03573093}} \put( 4.117772 , 5.304534 ){\circle*{ .03573093}} \put( 4.156988 , 5.319822 ){\circle*{ .03573093}} \put( 4.196205 , 5.335199 ){\circle*{ .03573093}} \put( 4.235422 , 5.350682 ){\circle*{ .03573093}} \put( 4.274639 , 5.366284 ){\circle*{ .03573093}} \put( 4.313856 , 5.382022 ){\circle*{ .03573093}} \put( 4.353073 , 5.397911 ){\circle*{ .03573093}} \put( 4.392290 , 5.413967 ){\circle*{ .03573093}} \put( 4.431507 , 5.430206 ){\circle*{ .03573093}} \put( 4.470723 , 5.446643 ){\circle*{ .03573093}} \put( 4.50994 , 5.463295 ){\circle*{ .03573093}} \put( 4.549157 , 5.480179 ){\circle*{ .03573093}} \put( 4.588374 , 5.49731 ){\circle*{ .03573093}} \put( 4.62759 , 5.514707 ){\circle*{ .03573093}} \put( 4.666808 , 5.532385 ){\circle*{ .03573093}} \put( 4.706025 , 5.550363 ){\circle*{ .03573093}} \put( 4.745241 , 5.568659 ){\circle*{ .03573093}} \put( 4.784458 , 5.587289 ){\circle*{ .03573093}} \put( 4.823675 , 5.606274 ){\circle*{ .03573093}} \put( 4.862892 , 5.62563 ){\circle*{ .03573093}} \put( 4.902109 , 5.645379 ){\circle*{ .03573093}} \put( 4.941326 , 5.665539 ){\circle*{ .03573093}} \put( 4.980543 , 5.686129 ){\circle*{ .03573093}} \put( 5.019760 , 5.707171 ){\circle*{ .03573093}} \put( 5.058976 , 5.728685 ){\circle*{ .03573093}} \put( 5.098193 , 5.750692 ){\circle*{ .03573093}} \put( 5.13741 , 5.773214 ){\circle*{ .03573093}} \put( 5.176627 , 5.796274 ){\circle*{ .03573093}} \put( 5.215844 , 5.819893 ){\circle*{ .03573093}} \put( 5.25506 , 5.844096 ){\circle*{ .03573093}} \put( 5.294278 , 5.868906 ){\circle*{ .03573093}} \put( 5.333495 , 5.894347 ){\circle*{ .03573093}} \put( 5.372711 , 5.920446 ){\circle*{ .03573093}} \put( 5.411928 , 5.947227 ){\circle*{ .03573093}} \put( 5.451145 , 5.974717 ){\circle*{ .03573093}} \put( 5.490362 , 6.002943 ){\circle*{ .03573093}} \put( 5.529579 , 6.031933 ){\circle*{ .03573093}} \put( 5.568796 , 6.061716 ){\circle*{ .03573093}} \put( 5.608013 , 6.09232 ){\circle*{ .03573093}} \put( 5.647230 , 6.123778 ){\circle*{ .03573093}} \put( 5.686446 , 6.156118 ){\circle*{ .03573093}} \put( 5.725663 , 6.189373 ){\circle*{ .03573093}} \put( 5.76488 , 6.223577 ){\circle*{ .03573093}} \put( 5.804097 , 6.258762 ){\circle*{ .03573093}} \put( 5.843314 , 6.294964 ){\circle*{ .03573093}} \put( 5.88253 , 6.332218 ){\circle*{ .03573093}} \put( 5.921748 , 6.37056 ){\circle*{ .03573093}} \put( 5.960965 , 6.41003 ){\circle*{ .03573093}} \put( 6.000181 , 6.450666 ){\circle*{ .03573093}} \put( 6.039398 , 6.492508 ){\circle*{ .03573093}} \put( 6.078615 , 6.535596 ){\circle*{ .03573093}} \put( 6.117832 , 6.579975 ){\circle*{ .03573093}} \put( 6.157049 , 6.625687 ){\circle*{ .03573093}} \put( 6.196266 , 6.672778 ){\circle*{ .03573093}} \put( 6.235483 , 6.721293 ){\circle*{ .03573093}} \put( 6.274699 , 6.771282 ){\circle*{ .03573093}} \put( 6.313916 , 6.822794 ){\circle*{ .03573093}} \put( 6.353133 , 6.875878 ){\circle*{ .03573093}} \put( 6.39235 , 6.930588 ){\circle*{ .03573093}} \put( 6.431567 , 6.986978 ){\circle*{ .03573093}} \put( 6.470784 , 7.045103 ){\circle*{ .03573093}} \put( 6.51 , 7.10502 ){\circle*{ .03573093}} \put( 6.549218 , 7.16679 ){\circle*{ .03573093}} \put( 6.588434 , 7.230473 ){\circle*{ .03573093}} \put( 6.627651 , 7.29613 ){\circle*{ .03573093}} \put( 6.666868 , 7.363829 ){\circle*{ .03573093}} \put( 6.706085 , 7.433634 ){\circle*{ .03573093}} \put( 6.745302 , 7.505616 ){\circle*{ .03573093}} \put( 6.784519 , 7.579845 ){\circle*{ .03573093}} \put( 6.823736 , 7.656394 ){\circle*{ .03573093}} \put( 6.862953 , 7.735339 ){\circle*{ .03573093}} \put( 6.902169 , 7.816759 ){\circle*{ .03573093}} \put( 6.941386 , 7.900732 ){\circle*{ .03573093}} \put( 6.980603 , 7.987343 ){\circle*{ .03573093}} \put( 7.01982 , 8.076677 ){\circle*{ .03573093}} \put( 7.059037 , 8.168821 ){\circle*{ .03573093}} \put( 7.098254 , 8.263867 ){\circle*{ .03573093}} \put( 7.13747 , 8.361909 ){\circle*{ .03573093}} \put( 7.176688 , 8.463043 ){\circle*{ .03573093}} \put( 7.215904 , 8.567370 ){\circle*{ .03573093}} \put( 7.255121 , 8.674991 ){\circle*{ .03573093}} \put( 7.294338 , 8.786014 ){\circle*{ .03573093}} \put( 7.333555 , 8.900548 ){\circle*{ .03573093}} \put( 7.372772 , 9.018706 ){\circle*{ .03573093}} \put( 7.411989 , 9.140605 ){\circle*{ .03573093}} \put( 7.451206 , 9.266365 ){\circle*{ .03573093}} \put( 7.490423 , 9.396110 ){\circle*{ .03573093}} \put( 7.529639 , 9.52997 ){\circle*{ .03573093}} \put( 7.568856 , 9.66807 ){\circle*{ .03573093}} \put( 7.608073 , 9.81056 ){\circle*{ .03573093}} \put( 7.64729 , 9.95756 ){\circle*{ .03573093}} %Finis. apl> '6Ox' graph 2,1,1,i,5 ,xpi ,2 , 0 ,0 " coshdaty.tex %Label the curve \put( .941205 , .07669564 ){n\#2} %Draw the data points \put( .980422 , .47513482 ){\circle*{ .03573093}} \put( 1.019639 , .624866 ){\circle*{ .03573093}} \put( 1.058856 , .770052 ){\circle*{ .03573093}} \put( 1.098072 , .910838 ){\circle*{ .03573093}} \put( 1.137289 , 1.047361 ){\circle*{ .03573093}} \put( 1.176506 , 1.179757 ){\circle*{ .03573093}} \put( 1.215723 , 1.308156 ){\circle*{ .03573093}} \put( 1.254940 , 1.432685 ){\circle*{ .03573093}} \put( 1.294157 , 1.553468 ){\circle*{ .03573093}} \put( 1.333374 , 1.670622 ){\circle*{ .03573093}} \put( 1.37259 , 1.784264 ){\circle*{ .03573093}} \put( 1.411807 , 1.894507 ){\circle*{ .03573093}} \put( 1.451024 , 2.001458 ){\circle*{ .03573093}} \put( 1.490241 , 2.105223 ){\circle*{ .03573093}} \put( 1.529458 , 2.205905 ){\circle*{ .03573093}} \put( 1.568675 , 2.303604 ){\circle*{ .03573093}} \put( 1.607892 , 2.398415 ){\circle*{ .03573093}} \put( 1.647109 , 2.490432 ){\circle*{ .03573093}} \put( 1.686325 , 2.579746 ){\circle*{ .03573093}} \put( 1.725542 , 2.666445 ){\circle*{ .03573093}} \put( 1.764759 , 2.750615 ){\circle*{ .03573093}} \put( 1.803976 , 2.832339 ){\circle*{ .03573093}} \put( 1.843193 , 2.911697 ){\circle*{ .03573093}} \put( 1.882410 , 2.988768 ){\circle*{ .03573093}} \put( 1.921627 , 3.063628 ){\circle*{ .03573093}} \put( 1.960844 , 3.136351 ){\circle*{ .03573093}} \put( 2.00006 , 3.207008 ){\circle*{ .03573093}} \put( 2.039277 , 3.27567 ){\circle*{ .03573093}} \put( 2.078494 , 3.342404 ){\circle*{ .03573093}} \put( 2.117711 , 3.407275 ){\circle*{ .03573093}} \put( 2.156928 , 3.470349 ){\circle*{ .03573093}} \put( 2.196145 , 3.531687 ){\circle*{ .03573093}} \put( 2.235362 , 3.591349 ){\circle*{ .03573093}} \put( 2.274579 , 3.649395 ){\circle*{ .03573093}} \put( 2.313795 , 3.705883 ){\circle*{ .03573093}} \put( 2.353012 , 3.760866 ){\circle*{ .03573093}} \put( 2.392229 , 3.814401 ){\circle*{ .03573093}} \put( 2.431446 , 3.866540 ){\circle*{ .03573093}} \put( 2.470663 , 3.917334 ){\circle*{ .03573093}} \put( 2.509880 , 3.966833 ){\circle*{ .03573093}} \put( 2.549097 , 4.015087 ){\circle*{ .03573093}} \put( 2.588314 , 4.062142 ){\circle*{ .03573093}} \put( 2.62753 , 4.108046 ){\circle*{ .03573093}} \put( 2.666747 , 4.152844 ){\circle*{ .03573093}} \put( 2.705964 , 4.196579 ){\circle*{ .03573093}} \put( 2.745181 , 4.239295 ){\circle*{ .03573093}} \put( 2.784398 , 4.281035 ){\circle*{ .03573093}} \put( 2.823615 , 4.321839 ){\circle*{ .03573093}} \put( 2.862832 , 4.361748 ){\circle*{ .03573093}} \put( 2.902049 , 4.4008 ){\circle*{ .03573093}} \put( 2.941265 , 4.439036 ){\circle*{ .03573093}} \put( 2.980482 , 4.476492 ){\circle*{ .03573093}} \put( 3.019699 , 4.513205 ){\circle*{ .03573093}} \put( 3.058916 , 4.549211 ){\circle*{ .03573093}} \put( 3.098133 , 4.584547 ){\circle*{ .03573093}} \put( 3.137350 , 4.619247 ){\circle*{ .03573093}} \put( 3.176567 , 4.653345 ){\circle*{ .03573093}} \put( 3.215783 , 4.686875 ){\circle*{ .03573093}} \put( 3.255 , 4.719869 ){\circle*{ .03573093}} \put( 3.294217 , 4.752362 ){\circle*{ .03573093}} \put( 3.333434 , 4.784384 ){\circle*{ .03573093}} \put( 3.372651 , 4.815967 ){\circle*{ .03573093}} \put( 3.411868 , 4.847143 ){\circle*{ .03573093}} \put( 3.451085 , 4.877941 ){\circle*{ .03573093}} \put( 3.490302 , 4.908394 ){\circle*{ .03573093}} \put( 3.529518 , 4.938530 ){\circle*{ .03573093}} \put( 3.568735 , 4.968379 ){\circle*{ .03573093}} \put( 3.607952 , 4.997971 ){\circle*{ .03573093}} \put( 3.647169 , 5.027336 ){\circle*{ .03573093}} \put( 3.686386 , 5.056501 ){\circle*{ .03573093}} \put( 3.725603 , 5.085496 ){\circle*{ .03573093}} \put( 3.764820 , 5.114350 ){\circle*{ .03573093}} \put( 3.804037 , 5.14309 ){\circle*{ .03573093}} \put( 3.843253 , 5.171746 ){\circle*{ .03573093}} \put( 3.88247 , 5.200345 ){\circle*{ .03573093}} \put( 3.921687 , 5.228916 ){\circle*{ .03573093}} \put( 3.960904 , 5.257487 ){\circle*{ .03573093}} \put( 4.000121 , 5.286087 ){\circle*{ .03573093}} \put( 4.039338 , 5.314742 ){\circle*{ .03573093}} \put( 4.078555 , 5.343483 ){\circle*{ .03573093}} \put( 4.117772 , 5.372336 ){\circle*{ .03573093}} \put( 4.156988 , 5.401332 ){\circle*{ .03573093}} \put( 4.196205 , 5.430497 ){\circle*{ .03573093}} \put( 4.235422 , 5.459861 ){\circle*{ .03573093}} \put( 4.274639 , 5.489453 ){\circle*{ .03573093}} \put( 4.313856 , 5.519303 ){\circle*{ .03573093}} \put( 4.353073 , 5.549439 ){\circle*{ .03573093}} \put( 4.392290 , 5.579891 ){\circle*{ .03573093}} \put( 4.431507 , 5.610690 ){\circle*{ .03573093}} \put( 4.470723 , 5.641865 ){\circle*{ .03573093}} \put( 4.50994 , 5.673449 ){\circle*{ .03573093}} \put( 4.549157 , 5.70547 ){\circle*{ .03573093}} \put( 4.588374 , 5.737963 ){\circle*{ .03573093}} \put( 4.62759 , 5.770958 ){\circle*{ .03573093}} \put( 4.666808 , 5.804488 ){\circle*{ .03573093}} \put( 4.706025 , 5.838586 ){\circle*{ .03573093}} \put( 4.745241 , 5.873285 ){\circle*{ .03573093}} \put( 4.784458 , 5.908621 ){\circle*{ .03573093}} \put( 4.823675 , 5.944628 ){\circle*{ .03573093}} \put( 4.862892 , 5.98134 ){\circle*{ .03573093}} \put( 4.902109 , 6.018797 ){\circle*{ .03573093}} \put( 4.941326 , 6.057032 ){\circle*{ .03573093}} \put( 4.980543 , 6.096085 ){\circle*{ .03573093}} \put( 5.019760 , 6.135993 ){\circle*{ .03573093}} \put( 5.058976 , 6.176797 ){\circle*{ .03573093}} \put( 5.098193 , 6.218537 ){\circle*{ .03573093}} \put( 5.13741 , 6.261253 ){\circle*{ .03573093}} \put( 5.176627 , 6.304989 ){\circle*{ .03573093}} \put( 5.215844 , 6.349786 ){\circle*{ .03573093}} \put( 5.25506 , 6.39569 ){\circle*{ .03573093}} \put( 5.294278 , 6.442746 ){\circle*{ .03573093}} \put( 5.333495 , 6.490999 ){\circle*{ .03573093}} \put( 5.372711 , 6.540499 ){\circle*{ .03573093}} \put( 5.411928 , 6.591293 ){\circle*{ .03573093}} \put( 5.451145 , 6.643431 ){\circle*{ .03573093}} \put( 5.490362 , 6.696966 ){\circle*{ .03573093}} \put( 5.529579 , 6.75195 ){\circle*{ .03573093}} \put( 5.568796 , 6.808437 ){\circle*{ .03573093}} \put( 5.608013 , 6.866483 ){\circle*{ .03573093}} \put( 5.647230 , 6.926146 ){\circle*{ .03573093}} \put( 5.686446 , 6.987484 ){\circle*{ .03573093}} \put( 5.725663 , 7.050557 ){\circle*{ .03573093}} \put( 5.76488 , 7.115429 ){\circle*{ .03573093}} \put( 5.804097 , 7.182162 ){\circle*{ .03573093}} \put( 5.843314 , 7.250824 ){\circle*{ .03573093}} \put( 5.88253 , 7.321481 ){\circle*{ .03573093}} \put( 5.921748 , 7.394204 ){\circle*{ .03573093}} \put( 5.960965 , 7.469064 ){\circle*{ .03573093}} \put( 6.000181 , 7.546135 ){\circle*{ .03573093}} \put( 6.039398 , 7.625494 ){\circle*{ .03573093}} \put( 6.078615 , 7.707217 ){\circle*{ .03573093}} \put( 6.117832 , 7.791387 ){\circle*{ .03573093}} \put( 6.157049 , 7.878087 ){\circle*{ .03573093}} \put( 6.196266 , 7.9674 ){\circle*{ .03573093}} \put( 6.235483 , 8.059418 ){\circle*{ .03573093}} \put( 6.274699 , 8.154229 ){\circle*{ .03573093}} \put( 6.313916 , 8.251927 ){\circle*{ .03573093}} \put( 6.353133 , 8.352609 ){\circle*{ .03573093}} \put( 6.39235 , 8.456375 ){\circle*{ .03573093}} \put( 6.431567 , 8.563326 ){\circle*{ .03573093}} \put( 6.470784 , 8.673568 ){\circle*{ .03573093}} \put( 6.51 , 8.78721 ){\circle*{ .03573093}} \put( 6.549218 , 8.904365 ){\circle*{ .03573093}} \put( 6.588434 , 9.025147 ){\circle*{ .03573093}} \put( 6.627651 , 9.149676 ){\circle*{ .03573093}} \put( 6.666868 , 9.278076 ){\circle*{ .03573093}} \put( 6.706085 , 9.410472 ){\circle*{ .03573093}} \put( 6.745302 , 9.54699 ){\circle*{ .03573093}} \put( 6.784519 , 9.68778 ){\circle*{ .03573093}} \put( 6.823736 , 9.83297 ){\circle*{ .03573093}} \put( 6.862953 , 9.98270 ){\circle*{ .03573093}} \end{picture} \end{center} %Finis. apl>)off